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SUMMARY 

Mathematical expressions have been derived to describe rates of drug release from con- 
trolled release devices. The devices have been limited to those of a non-degradable nature 
and which have the geometry of a plane sheet. Full solutions to Ficks' Laws of diffusion 
have been compared with the approximate solutions in general use. Multiphase layers 
have been considered and equations show the effect of slow interfacial transfer between 
these layers. 

INTRODUCTION 

During recent years much work has been concentrated on the development of con- 
trolled release devices. These drug delivery systems provide release rates which are deter- 
mined by the device itself and should thus be insensitive to biological variations. One of 
the most successful means of producing such a dosage form has been to use the diffusion 
process as the rate-determining step. 

It is the purpose of this paper to present a simple account of the solutions to the diffu- 
sion equations used in this type of problem and to compare some of the complete solu- 
tions with the approximate solutions which are in common use. Initially: devices in which 
there is only one phase present, will be considered. For such a configuration the solutions 
to Fick's Laws of diffusion are simphfied and this provides an easier understanding of the 
mathematics involved. 

In the second half of the paper more complex multiphase systems will be considered 
in which the drug crosses an organic-aqueous interface. The effects of slow interfacial 
rate constants will be discussed. 

* Present address: Department of Pharmacy, University of Nottm~ham, University Park, Nottingham 
NG7 2RD, England. 



178 

Two major categories of release device are available. First when the slat, is full of drug 
(the burst effi~-ct) and second when the sheet is initially free of drug but supplied by a 
drug reservoir (the lag effect). Simultaneous dissolution of the inert matrix will not be 
considered and difussion coefficients will be considered to be concentration independent. 

(1) THE BURST EFFECT 

Fick's second law of diffusion is expressed mathematically as: 

ac aZc 
- D ~  (1) 

at ax 2 

where c is concentration, x is distance, t is time and D is diffusion coefficient. 
Equation 1 can be stated in terms of dimensionless variables: 

au a% 
- -  = ~ -  ( 2 )  
ar ax 

in which 

u =C/Co (3) 

X=x/£ (4) 

r " D t I R  2 ( 5 )  

and Co is the initial concentration of drug in the sheet and ~ is the thickness of the sheet. 
The concentration profiles of the drug in the sheet at different times are shown in 

Figs. 1 and 2. It is now necessa~ to define the boundary conditions for these types of 
experiments. 
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Fig. 1. Concentration profile m the sheet for Case IB calculated usiug Eqn. 62 given :in the Appendix. 
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Fig. 2. Concentration prof'de in the sheet for Case liB calculated using Eqn. 64 given in the Appendix. 

(a) Drug present exists only in the sheet, no reservoir. 

In this case the following boundary conditions exist 

7"=0, u = l  (6) 

X = 1 , u = 0 (7) 

= , = 0  ( 8 )  
0 

Equation 7 shows that the receptor phase is acting as a perfect sink by maintaining zero 
concentration at the outside surface of the sheet. The boundary condition expressed in 
Eqn. 8 shows that there is no drug reservoir at the inner surface of the slab. 

Equation 2 may be solved by a variety of techniques but the method used in this paper 
is to use Laplace transforms. 

s f f -  1 - a2fi (9) 
OX 2 

This differential equation has the general solution 

1 (10) U = A coshx/s X + B sinh-ffs X + - 
S 

Differentiating 

~---~ = X/s A sinh~/s X + ~/s B coshx/s X (11) 
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The boundary conditions in Eqns. 7 and 8 may now be substituted to eliminate the 
coefficients A and B from Eqns. 10 and 11. Thus, 

0__.~. = _s_l/2 sechx/s sinhx/s X (12) 
0× 

The total amount of drug that has passed through the plane × = 1 at time t, Mr, ~s given 
by 

M t = - D A  ~x x=e 
0 

In terms of the dimensionless variables defined in Eqns. 3, 4 and 5 

Mt =-Alco f ( ~ X ) d r  
0 1 

(14.) 

But Alto is the total amount of diffusant contained initially in the sheet and is thus the 
amount that would be released after an infinite amount of time, Moo. Substituting Eqn. 
12 when X = 1 

T, 

M t = M., f ~-, S - 1 / 2  tanh-.v/s dr (15) 
O 

The inverse transform in this equation is given by Spiegel, 

oo 
,~--1S--I [2 t~,~VS ~ 2 ~ (~  1 )l'l~ 1 exp (~(2n  ~ 1)2~"~1 sin(2n m 1 )~~r 

,~.= l 4 2 
(16) 

Integrating between the limits 0 and r 

oo 

M t=M** -~-2 =1(2"a- 1)2 exp ( -  (2n - 1)2~t2~ ) ) 1 4  (17) 

This is the full solution for the burst effect without a reservoir and may be applied over 
~he complete time range of an experiment. Simplifications are possible by making 
approximations which are valid for the initial and final periods of reitease, i.e. at short and 
long times. 

(iJ Short time approximation 
Equation 15 can be integrated with respect to r by division by the Laplace time 

variable s, thus 

M t = M®~. -1 s -3/2 tanhx/s (18) 
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At short times r <;< 1 s > >  1 and tanh-~/s ~ 1 

Mt ~ M**£-1 s-3/2 (19) 

2M~(r/rr) It2 (20) 

(ii) Long time approximation 
At long times s < <  1 and tanhx/s ~. ~/s (2) 

Mt =Moo ~--l s -1 (21) 

M t =M.. (22) 

and all the drug that is contained in the slab is released. 

(b) Drug reservoir maintained at inner slab surface. 

The problem is similar to that described above but the boundary conditions are differ- 
ent. Equation 10 describes the variation in ~ with X and s but the coefficients A and B 
are determined by using the boundary conditions in Eqn. 7 and: 

x=O,u  = 1,if= 1/s (23) 

Equation 23 gives the requirement that a con~;tant reservoir is maintained at the inner sur- 
face of the sheet. Thus the equations derived here are only applicable where there is 
insignificant depletion of drug concentration m the reservoir. 

Equation 11 with conditions 7,23 and × = 1 gives 

(0~-~X)---s-'/2, cothx/s (24) 

Substitution of Eqn. 24 into Eqn. 14 followed by the inversion of the transform 
(Spiegel), gives 

[r  +_~+,~2 n ~  1= nl exp(-n2zr2r)]_l (25) Mt = M** 

In this case Moo is not a finite quantity of drug since Co is the concentration contained in 
the reservoir which is not being depleted. 

The ~or t  time approximation for this configuration is the same as Eqn. 20 since coth 
~/s ~ 1 for s ~" 1. At long times, the exponential term in Eqn. 25 will become very small 
and 

M t = M**(r + 1 / 3 )  ( 2 6 )  

or  

Mt AcoDt A~co - - -  + ~ ( 2 7 )  
3 
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Fig. 3. Comparison of full and approximate solutions for Cases IB an,d IIB using Eqns. 17, 20 and 25. 

The first term in Eqn. 27 expresses the accumulated material from the steady state flux 
(Fick's t st law) and the second term gives the displacement due to the initial non-steady 
state period. 

Comparision of  full and approximate solutions 

Fig. 3 shows theoretical curves plotted using Eqns. 17,213 and 25. The variation of the 
ratio Mt/Moo with r is shown. The graphs show that the approximate solution, Eqn. 20 is 
very go~d at describing release rates up to the time when 60% of the drug contained in 
the sheet has been released. This corresponds to a value of r "" 0.3. It is thus possible to 
calculate how long the controlled release device will release drug at a rate proportional to 
t 1/2 from a knowledge of the diffusion coefficient of the drug and the thickness of the sltab. 

It is interesting to note that many authors have used expressions similar to Eqn. 20 to 
explain drug release rates from ointments and creams (e.g. Chowhan and Pritchard, 1975; 
Ostrenga et al. 1971). In these circumstances the full diffusion equation has been apprt~xi- 
mated to that given in Eqn. 20 and the result:~ show that the experimental release rates 
are predicted satisfactorily by this simplified formula. 

(2) THE LAG EFFECT 

The cx>ncentration profiles at different r values for lag experiments are show~, in 
Fig. 4. At a value of r = 1, the concentration drop across the slab is linear and steady state 
diffusion has been established. The rates of transfer are givelt by Fick's 1 st law. 

In order to understand the rates of  diffusion before the steady state exists it is neces- 
sary to solve Eqn. 2, Fick's 2nd law of diffusion expressed in dimensionless variables. For 
the lag experiments a new set of boundary conditions must be applied. The appropriate 
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Fig. 4. Concentration profile in the sheet for Case IL calculated u~s~.ng Eqn. 66 given in the Appendix. 

conditions are" 

r - o ,  u=O (28) 

X =0,  u = l , ~ = ! / s  (29) 

X = 1, u = 0, U = 0 (30) 

Equations 29 and 30 are the conditions used for the burst effect with reservoir (Eqns. 7 
and 23) and their significance has been discussed. The important difference is condition 
28 which shows that initially the sheet is free of drug. Taking the Laplace transform of 
Eqn. 2 and using 28, 

(31) 
0× 2 

which has the general solution 

U = A coshx/s X + B sinhx/s X (32) 

Using the same techniques as previously, the coefficients A anti B may be eliminated and 

(~k--~l = s -1'2 s inhx/s -  s -1'2 coshx/s cothx/s (33) 
\ o X ]  1 

Substituting into Eqn. 14 to find M t 

~r 
M t = M** f cosech~/s dr 

0 
(34) 
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Spiegel gives the inverse transform 

~_-1 coshx~/s 1 2 
= -  + -  ~ ( -1)n exp(_n27r2r) (35) 

x/s sirth a~/s a a n= 1 

Using values a = 1, x = 0, 

o o  

~.-1 s-1/2 cosech~/s = 1 + 2 ~ ( - 1 )  n exp(-a2rr2r) (36) 
n = l  

Integrating between the limits 0 and r gives 

o o  

It. 1 2 ~ (-1)nex.p(_n2,n.2r)l (37) 
M t = M~.  6 ~r z 

n = l  

(i) Short time approximation 
At ~or t  times r "~ 1, s >> 1 and the cosech ~/s term in Eqn. 34 may be approximated 

(Abramowitz and Stegun, 1970, p. 85), 

cosech~/s ~ 2 exp(--x/s) (38) 

Thus from Eqn. 34 

M t = 2M=~_ -1 s -3/2 exp(--~s) (39) 

Inverting (Abraraowitz and Stegun, 1970, p. 1026) gives an expression for M t in terms of 
a repeated integral of the error function complement: 

M t = 4M**~/r ierfc(1/2~/r) (40) 

It is possible to express ierfc (z) as a power series (Abramowitz and Stegun, 1970, p. 
300), aad, taking tile first term only in this expansion 

since r ,~ 1, z = 1/2 ~/r >> 1, 

2 exp(-z 2) 
ierfc z ~ ~ (2z) 2 (41) 

Hence, 

M t = 8M**n-l/2':= 3/2 exp(--1/4~) (42) 

Similar expressi,)ns have been ob t~ led  by Fourier ~Maalysis (Rodgers et al. 1954; Short 
et al. 1970). 
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(ii) Long time approximations 
At long times s ~ 1 and cosech x/s may be approximated (Abramowitz and Stegun, 

1970,p. 85) 

cosech~/s ~ s -1/2 - sl/2/6 (43) 

From Fqn. 34 

M t = M=~-I(s -2 - (60  -1) (44) 

M t = M=(r  -- 1 /6 )  ( 4 5 )  

This is the same as "he first two terms in the bracketed expIessio~a in Eqn. 37. In this 
equation the long time approximation is given since the exponential term becomes 
negligible. 

Comparison of  full atd approximate solutions 

Fig. 5 shows ~he theoretical release curves from plotting Eqns. 37 and 42. The short 
time approximation deviates from the full expression at fairly short times and remains 
within 10% of the true value up to T "~ 2 × 10 -~. At r = 10 -1 there is a 50% error. The 
agreement is not as good as that for the burst effect which is caused by taking only the 
first term in the ierfc expansion. For work where an accurate expression is required, 
Eqn. 42 ~ould  only 9e used for very small values of r. 

Lag time experiments have been used to measure diffusion coefficients in excised 
skin (Foreman and Kelly, 1976; Foreman et al., 1977). In this work computer simula- 
tions ushlg the full expression, Eqn. 37, were used successfully. Little data to date has 

M t / M c o  
1.0 

0.5 - 

0 

APPRO XIMATE 

FULL 

,! 

0 (>05 0.1 
1; 

Fig. 5. Comparison of the full and approximate solutions for short time experiments in Case IL (Eqns. 
3 7 and 4 2). 
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been analysed using the approximate soluti, on, Eqn. 42, apart from the two references 
previously cited. 

(3) EFFECT OF INTERFACIAL TRANSFER KIN~:TICS ON RATES OF RELEASE 

Usually it has been assumed that in a two phase system, equilibration by partitioning is 
fairly rapid. However experiments with such systems (Albery et al., 1974, 1976)have 
shown that there are significant free energy barriers for transport across a liquid-liquid 
interface. For drug release from multiphase d v~ces it is necessary to investigate the signif- 
icance of interfacial kinetics on release rates. 

As in the previous section it is more convenient to use dimensionless variables for the 
solution of the differential equations. The same notation will be used for the cases 
involving interfacial transfer but a new n~,~malised variable is introduced, g, which 
describes the rate of transport across the interface. For an interfacial rate constant ki/  
m - s -~ , K is defined 

= ki~/D (46) 

where kl is the process of transfer of  the substrate from the organic to the aqueous 
envirov ~ent .  

kl 
C o ~ i c  ~ Caqueous K 

k - I  

For transport from a laminated sheet, the different combinations of burst (B) and lag 
(L) effects and position(s) of the interface(s) are shown in Table 1. Cases IB, fiB and IL 
are the single phase systems discussed initially. Tile rest of the cases shown in Table 1 
involve at least one two phase boundary. 

The solutions to the diffusion equations for the remaining cases (Ill B, L; IV B, L; IlL) 
are found by using; the techniques described in the previous section. The different 

TABLE 1 

POSITIONS OF THE PHASES IN THE DIFFERENT CASES 

Case Reservoir Sheet Receptor 
(Concen~trations in compartments at • = 0) 

IB - aqueous (co) aqueous (0) 
liB aqueous: (co) aqueous (Co) aqueous (0) 
Hm _ organic (co) a aqueous (0) 
IVB organic ~Co) organic (Co) a aqueous (0) 
IL aqueous (Co) aqueous (0) aqueous (0) 
HL ozganic (co) organic (0) a aqueous (0) 
HIL organic (co) a aqueous (0) aqueous (0) 
IVL aqueous (CO) a organic (0) a aqueous (0) 

a Denotes the location of an interface 
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T A B L E  2 

T H E  B O U N D A R Y  C O N D I T I O N S  F O R  T H E  D I F F E R E N T  CASES 

Case r = 0 r = 0 x = 1 ( a u / a x ) o  ( a u / a x ) l  

IB u =  1 - u l  = 0  0 - 

l i B  u = 1 Uo = 1 u l  = 0 - - 

i l l B  u - 1 - - 0 - g u l  

IVB u = 1 uo = 1 - - - K u l  

IL u = 0 uo = 1 u l  = 0 - - 

i l L  u = 0 u o = 1 - - - g u  l 
! I lL  u ffi 0 - u !  = 0 (Kuo/K)--K - 

IVL u = 0 - - r U o - r / K  -~ :u l  

T A B L E  3 

VALUES OF f'(s) F O R  T H E  D I F F E R E N T  CASES 

Case Burst  e f fec t  (B) Lag effec t  (L) 

1 tanh  x/s/s 3/2 s -3/2 cosech x/s 

11 s -a/2 c o t a n h  ~/s K/S 312 sinh ~/s(K + ~/s co tanh  ~/s) 

111 K tanh  4S/S 3/2 (4S t anh  ~/s + K) K/S 3/2 cosh ~/s(x/s + KK -1 co t anh  ~/s) 

IV K/S 3/2 (x/s + r t anh  x/s) 1/Ks a/2 sinh -,/s 1 + r tanh x/s + - - r  2 

T A B L E  4 

A P P R O X I M A T I O N  O F  T H E  HYPERBOLIC  FUNCTIONS USED IN LONG AND S H O R T  TIME 

SOLUTIONS 

Hyperbol ic  func t i on  Short  t imes Long t imes 
," < <  1 r > >  1 

cosh z exp(z) /2  1 
sinh z exp(z) /2  z 

t anh  z 1 z 

T A B L E  5 

SOLUTIONS F O R  T H E  D I F F E R E N T  CASES WHEN I N T E R F A C I A L  B A R R I E R S  A R E  NEGLIGIBLE 

Case Burst  e f fec t  (B) Lag e f fec t  (L) 

I IB IL  

II l i B  IL  

III IB K × IL  
IV l iB  I L / K  
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boundary ex, nditions which apply to th~ cases are summarized in Table 2. Solutions for 
all the cases are given in Table 3. In this table, values of  f ( s )  are shown where 

Mt = M J -  -1 f-(s) (47) 

Simple solutions for Mt do not exist and it is easier to consider different approxima- 
tions for short and long time experiments and for large and small values of K. The differ- 
ent approximations used for the hypobolic terms are summarized in Table 4. 

(i) Solutions for fast interfacial transfer. 
For large values of K where the interfacial transfer term is negligble the solutions are 

simple functions of  the single phase results. The solutions are summarized i,a Table 5. 
For the two cases where there is. an interface established at the inner sheet surface the 
solution involves the partition coefficient K. 

(ii):Solutions for slow interracial transfer. 
(a) Class B, the burst effect. Cases IIIB and WB for short times, s >> 1, reduce to the 

same solution: 

f"-(s) = (48) 
S-  

M, ~Moo 
0-15 " 

M t = M,~r (49) 

OO5 
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Fig. 6. Release rates for the short time approximations in Cases IIIB ~nd IVB (Eqn. 49). 



189 

The rate of release for these types of devices is independent of time, J~.e. a zero order 
process. This is shown in Fig. 6. Also plotted on this graph is the rate of release of 
material from a similar device in which there is no interfacial barrier. "[he figure shows 
that for this case a much faster release rate is given which is not zero order. 

Considering long time experiments when r >> 1, case IIIB gives the approximation: 
m 

f (s )  = r/s(s + K) (50) 

which, when inverted, gives 

M t = M=(1 - exp(--rT)) (51) 

The slow interfacial rate constant has an exponential effect on the cumulative amount 
of drug released. Fig. 7 shows this exponential increase in Mt with time. For values of 
K >> 1, the exponential term is very small and interfacial barriers become insignificant. A 
very significant effect is observed when K = 0.1 where release rates are markedly affected 
over a wide time range. 

Case IVB is interesting in that the same release characteristics apply for both long and 
short times. Equation 49 holds for all values of r which is caused by the very slow release 
rate from a reservoir whose concentration is undepleted. 

(b) Class L, the lag effect. The lag expressions exist where a reservoir of drug is main- 
rained in the device which does not deplete significantly. Considering the short time 
cases, the two configurations IlL and IIIL reduce to the same approximation 

f-(s) = 2K exp(--x]s)/s 2 (52) 

Substitution into Eqn. 47 and inversion (Abramowitz and Stegun, 1970 p. 1026) gives:- 

M t = 2M**KT erfc(1/2X/r) (53) 

Erfc (z) may be expressed as an asymptotic series (Abramowitz and Stegun, 1970 p. 298) 

k l t /M  

0'5 

0 

0.1 

,, = 0.01 

/ . /  

. r  . - ~  i i I 

0 5 10 "C 15 

Fig. 7. I,~,ag time release rates for Case II!B calculated using Eqn. 51. 
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Fig. 8. Release rate at short times for eases IIL and filL, Eqn. 55. A plot of the full Eqn. 37, for the 
case where no interfacial barriers exist, i~ also shown for comparison. 

and the first term taken as an approximation since : l /2~/r)  >> 1 ; 

erfc(z) ~ lr -1/2 z -I exp(-z  2) (54) 

Hence: 

M t = 4M**rr-1/2r3/2r exp(-1/4r)  (55) 

Equation 55 is plotted in Fig. 8 with K values of ] .0 and 0.1. Comparison is possible with 
the full diffusion solution, Eqn. 37, in which there is no interfacial term (K ~ oo). With 

= 1 there is a slight reduction in the amount of drug relearned but with K = 0.1 there is 
a very significant decrease. 

For case IVL the first two terms in the brr:cketed expression (Table 3) are insignificant 
at short times, 

¢--(s) ~ 2K2K-1s -s'2 exp(--~/s) (56) 

Inverting (Abromowitz and Stegun. 1970, p. 1026), 

M t ~ 16~-,t**K-IK2ra/~i3 eft,:(1/2~/z) (57) 

The integrated error function may be approxhnated since (1/2-/:r) .~ 1 (Abramowflz and 
$tegun, 1970, p. 300), 

Mt ~- 32M**rr-l/2K-1~2r~/~ exp(-1/47") (58) 

This expression has been plotted in Fig. 9 for different values of K but maintaining a 
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Fig. 9o Short time approximation for Ca~e IVL (Eqn. 58). 

191 

partition coefficient of unity. A change in the partition coefficient will have a iinear 
effect on the amount of drug released. Interfacial rate constants have a squared effect on 
the release rate and thus show a considerable effect. 

The long time approximations for cases IlL and IIIL reduce tn the same solution as 
cases liB and IVB; the release rate is zero order and given by Eqn. 49. A linear plot is 

40 

20 

MIM~ 

~ ,?K=I 

0 I 

0 5 

Fig. 10. Long time approximation for Case IVL (Eqn, 60). 
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obtained as shown in Fig,. 6. 
Case IVL is more complex. From the solution in Table 3, 

to2 (59) 
¢ts) ~ Ks2( s + 2K) 

which may be inverted and substituted into Eqn. 47 to give 

1 M t  - 2K + ~ [1 - exp(-2Kr)] (60) 

Fig. 10 shows this relearn rate for different values of  the interfacial rate constant but 
using a partition coefficient of unity. This case is similar to the short time approximation 
for IVL in which the partition coefficient has a linear effect on the release of drug. The 
exponential term (exp(-2Kr)) has little effect at long times and a zero order process is 
observed. 

DISCUSSION 

The expressions derived for the different systems in which there are no phase barriers 
are very familiar and ha~e been treated by many authors (e.g. Crank, 1975; Carslaw and 
Jaeger, 1959). The derivation of these cases has been given to show one method of solving 
Fick's laws of diffusion. The mathematical techniques illustrated have then been applied 
to more complicated systems where interfacial transport is included. 

The results show that interfacial kinetics can have a marked effect on the rates of drug 
release. A typical value of K = 1 could dominate transport characteristics. This normalized 
variable is related to ki, the interfacial rate constant by Eqn. 46. From previous work 
(Albery et al., 1974, 1976) typical values of ki have been determined, these are of the 
order of 10 -s m s -1 . The diffusion coefficient, D, in an organic liquid such as isopropyl 
myristate is approximately 10 -1° m 2 s -1 . For a K value of  unity this would give £ values of 
10 -5 m. The thickness of the organic laminate in the controlled release device would have 
to be of the order of 10/~m for interfacial kinetics to dominate over diffusion. However 
some interfacial rate constants are smaller and the diffusion coefficieT~ts larger than the 
typical values quoted above, in these cases the thickness of the org?.aic layer may be 
larger and the interfacial kinetics still play a dominant role. 

For the cases IIIB (long times) and IVL (short times) where the K :erms are, respec- 
tively, exponential and squared, the transfer kinetics will exert a 1~ ger effect and it 
would be expected that they will dominate over a wider range of conditions. 

In some cases of pharmaceutical importance the release rate/time graphs exhibit a 
sigmoid prof'de. This is a result of  an initial lag effect followed by a pseudo steady state 
period. The slowing down at long times is due to depletion when there is only a finite 
quantity of drug present. It is possible to allow for this effect but the mathematics is 
complicated and will be considered in a later publication. 

The generality of these diffusion equations offers wide applicability. They may be 
used to interpret the transport of drugs into and out of the skin, which may be regarded 
as a mtdtiphase laminate. Equally they may be employed in the calculation of gastro- 



193 

intestinal absorption rates. In any multiphase system it is important to consider the 
effects of relatively slow interfacial transfer on total release rates. The barriers should be 
considered in the design of new drug delivery systems and could be utilized in producing 
long acting zero order release devices. 

APPENDIX 

It is interesting to calculate the way in which the concentration varies with time in the 
sheet. Equations may be easily obtained using those already derived. 

The burst effect 

(a) No reservoir 
Equation 10 shows the way in which the concentration varies with the distance, X, and 

the Laplace time variable, s. Substituting the values of A aad B 

_ ]l coshx/s × (61) 
s s coshx/s  

This equation is inverted (Spiegel) to give the variation of u with × and r, 

u = - 4  ~ ( - 1 ) " - n ~  l ( ( 2 n - 1 ) 2 r r 2 r ~ _  ((2n-1)rO()2 
rr - ( 2 n -  1) exp -~ ] cos (62) 

(b) Reservoir present 
Using Eqn. 10 with the different boundary condition 23 

1 sinhx/s X 
U-  

s s sinhx/s 
(63) 

a n d  - 

2 ( - 1 )  n 
u = 1 - × - - -  ~ exp(-n2rr2r) sin(nTr×) 

lrn=l n 

(64) 

Tile lag effect 

The concentration profile for the lag effect is calculated using Eqn. 32 with the coeffi- 
cients A and B; 

sinhx/s (1 - X) (65) fi= 
s sinhx/s 

and 
oo  

2 ( - 1 )  n 
u = 1 - X + -- ~ exp(-n2rr2r) sin(n(1 - ×)) 

lrn=l n 
(66) 
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